

DUMA – Debugging memory on BREW®

DUMA – Debugging memory on BREW®

2
Confidential

DUMA – Debugging memory on BREW®

1 About DUMA and this test ... 2

2 Running TestDUMA ... 3

3 Leak Detection ... 5

4 Buffer Overrun Detection .. 8

5 Buffer Under-run Detection 10

1 About DUMA and this test

DUMA is an open source library that can detect the following memory access

conditions:

• Illegal access beyond the top of an allocated area

• Illegal writes before the start of an allocated area at de-allocation time

DUMA stops the program under test at the exact instruction causing the fault

In addition, this test builds on the DUMA layer and:

• Stores four (configurable) levels of call stack at every allocation

• Tracks all allocations and deallocations to aid finding bugs

3
Confidential

DUMA – Debugging memory on BREW®

2 Running TestDUMA

Project files have been provided for Visual C++ 6.0, which rely on the environment
variables BREWDIR and BREWSDKTOOLSDIR being correctly set. This project

has only been tested on the BREW 3.1.5 SDK.

In order to run the application:

1. Ensure that the BREWDIR environment variable points to the location of the

3.1.5 SDK, e.g. C:\Program Files\BREW 3.1.5 SDK\sdk

2. Ensure that the BREWSDKTOOLSDIR environment variables points to the

location of the BREW SDK Tools, e.g. C:\Program Files\BREW SDK Tools
1.0.1

3. Run the BREW Simulator from Visual Studio and make sure the MIF

Directory setting is pointing to <testdumadir>. Use the device pack included in
<testdumadir>.

4. Choose the TestDUMA application.

5. BREW loads the TestDUMA DLL and starts the application.

6. You can now generate various memory errors by following the instructions

on-screen.

Figure 1 - Startup Screen

Figure 2 -Generating a leak

When the application runs, you have three choices. Press a key to choose one of

the three error cases. Pressing any other key (except END) will redraw the screen.

END will exit the application.

4
Confidential

DUMA – Debugging memory on BREW®

5
Confidential

DUMA – Debugging memory on BREW®

3 Leak Detection

Memory leaks are not instantly detected. You can search for potential memory leaks
1

or you can wait until application exit, when memory_check() is called in this test.

To trigger detection of a memory leak:

• Press 1 on the main menu, to leak 4 bytes

• Exit the application

Detection and analysis of a leak works as follows:

When memory_check() detects a leak, it triggers a breakpoint, and you will see a
standard Visual Studio error box with the message ‘User breakpoint called from code

<location>’. Click OK, and you will see the following screen (Figure 3). The

breakpoint was triggered by ‘__asm int 3’, and as you can see, TestDUMA has found
a leak. This is similar information to that which the BREW Simulator would give you

normally, but we can now look further at the allocation, and find out who exactly
allocated it.

Figure 3 C++ listing for leak detection

1 not implemented in this example, but easy to implement via calling memory_check()

6
Confidential

DUMA – Debugging memory on BREW®

Show the Assembly View, either by hitting Ctrl-F11 or right-clicking and selecting
‘Go To Disassembly’. You will now see (Figure 4) an annotated assembly listing.

Select one of the allocations[i].callers[] values, and drag it to the assembly listing,

then release.

Figure 4 Assembly listing for leak detection

7
Confidential

DUMA – Debugging memory on BREW®

You will now see a new listing (Figure 5). In this case we selected the value for
allocations[i].callers[2], so we are now looking at the method which called the method

which called the method which allocated the memory. Or, if you like, we end up in

this code when we return through three levels of call-stack from the allocation routine.
This is considerably more useful information than the BREW Simulator gives you.

Figure 5 Assembly listing for original allocation

8
Confidential

DUMA – Debugging memory on BREW®

4 Buffer Overrun Detection

When a buffer overrun occurs, DUMA stops execution at the exact instruction causing
the illegal memory access. You will be able to see the full call stack for the code

being executed. In addition, provided you can identify the address of the allocation,
which is generally pretty easy

2
, you can look at where the address was allocated, and

the call stack at that time.

When an illegal memory access is detected, you will see the following dialog (Figure
6). On Visual Studio 2005 there will be an option to break or continue, ignoring the

error.
3

Figure 6 Breakpoint following illegal memory access

Click OK (break on VS 2005) and you will see the line of code triggering the

error (Figure 7). TestDUMA includes a utility function find_allocation(void*)
which will return the allocation information and call-stack for a pointer. In this

case the buffer overrun occurs when access buf[5], so we call
find_allocation(buf). If the pointer passed as a parameter to find_allocation()

was not actually allocated on DUMA’s heap, find_allocation() will return

NULL.

2 It would be possible to add a method to identify the allocation by looking backwards through memory

for a magic marker.
3 To ignore the error and continue in Visual C++ 6.0, click OK, then Ctrl-F11 to get the assembly view.

Right click on the instruction *after* the illegal memory access and select “Set Next Statement”. Then

continue running with F5. You can do this in the C view as well, but it is not recommended, as you will

be skipping more assembly instructions than necessary.

9
Confidential

DUMA – Debugging memory on BREW®

Figure 7 C++ listing for buffer overrun detection

It is important to note that find_allocation() only works on pointers allocated on

DUMA’s heap. It will not return call stack information for pointers allocated by other

means, or for a pointer which addresses any address other than the base of a heap
block. If the pointer has been modified, for example to point somewhere inside a heap

block, find_allocation() will return NULL.

Having ascertained the call stack information in the watch window –

find_allocation(buf).callers in this instance – you can now use this call stack
information to view the code where the allocation took place. Follow the same

procedure as listed in Leak Detection in the previous section.

10
Confidential

DUMA – Debugging memory on BREW®

5 Buffer Under-run Detection

Buffer under-runs are only detected on a write, not a read, and are detected at de-
allocation time. At de-allocation, you will see a User Breakpoint dialog, and after

clicking OK, you will be shown code in the DUMA_Abort routine. To find the actual
code where the de-allocation takes place, you will need to go back up the call stack –

in this case click on MyApplet::HandleEvent, which is the last visible line of call

stack.

Figure 8 C++ listing for buffer under-run detection

