4

DUMA — Debugging memory on BREW®

(/A tirsource

DUMA — Debugging memory on BREW® (/ L\" airsource

r MOBILE SOFTWARE

1 About DUMA and this test..........cormriieeee, 2
2 Running TestDUMA ... e e 3
3 Leak Detection ... e 5
4 Buffer Overrun Detection..........coovreeiiieiiiciieccrc e, 8
5 Buffer Under-run Detection.........cccooeeerimiriecnrencrnennnes 10

1 About DUMA and this test

DUMA is an open source library that can detect the following memory access
conditions:

e Illegal access beyond the top of an allocated area
e [Illegal writes before the start of an allocated area at de-allocation time

DUMA stops the program under test at the exact instruction causing the fault

In addition, this test builds on the DUMA layer and:
e Stores four (configurable) levels of call stack at every allocation

e Tracks all allocations and deallocations to aid finding bugs

2
Confidential

DUMA — Debugging memory on BREW® (/ ‘\" airsource

F MOBILE SOFTWARE

2 Running TestDUMA

Project files have been provided for Visual C++ 6.0, which rely on the environment
variables BREWDIR and BREWSDKTOOLSDIR being correctly set. This project
has only been tested on the BREW 3.1.5 SDK.

In order to run the application:

1. Ensure that the BREWDIR environment variable points to the location of the
3.1.5 SDK, e.g. C:\Program Files\BREW 3.1.5 SDK\sdk

2. Ensure that the BREWSDKTOOLSDIR environment variables points to the
location of the BREW SDK Tools, e.g. C:\Program Files\BREW SDK Tools
1.0.1

3. Run the BREW Simulator from Visual Studio and make sure the MIF
Directory setting is pointing to <testdumadir>. Use the device pack included in
<testdumadir>.

4. Choose the TestDUMA application.
5. BREW loads the TestDUMA DLL and starts the application.

6. You can now generate various memory errors by following the instructions
on-screen.

TestDUMA
(1) Generate a leak

{2) Buffer overrun (read)
(3} Buffer underrun (write)

(1) Generate a leak
{2) Buffer overrun (read)
(3) Buifer underrun (write)

Leaked 4 bytes
h=) T o 7
Figure 1 - Startup Screen Figure 2 -Generating a leak

When the application runs, you have three choices. Press a key to choose one of
the three error cases. Pressing any other key (except END) will redraw the screen.
END will exit the application.

3
Confidential

DUMA — Debugging memory on BREW® (/‘_\ » dIrsource
J’ MOBILE SOFTWARE

4
Confidential

DUMA — Debugging memory on BREW® airsource

MOBILE SOFTWARE

3 Leak Detection

Memory leaks are not instantly detected. You can search for potential memory leaks'
or you can wait until application exit, when memory check() is called in this test.

To trigger detection of a memory leak:
e Press 1 on the main menu, to leak 4 bytes
o Exit the application

Detection and analysis of a leak works as follows:

When memory check() detects a leak, it triggers a breakpoint, and you will see a
standard Visual Studio error box with the message ‘User breakpoint called from code
<location>’. Click OK, and you will see the following screen (Figure 3). The
breakpoint was triggered by ¢ asm int 3’, and as you can see, TestDUMA has found
a leak. This is similar information to that which the BREW Simulator would give you
normally, but we can now look further at the allocation, and find out who exactly
allocated it.

foopesiduma - MEcresolt Visuel Cr+ [break] - [eob, ATesishicsidemeicnt.cpp)
[e G ea et Bt (b Dok W Help -8 =
v 1 PETEED
woide PaEam3
v 1 P
¥
ERCErn "7 woid eERaEy Ohesokivoid]l JI

fariint 1 = D2 i <= last_s11loa: i++]

if{allooscions[i] pre 1= 0]
i

&k int 2
TBCFRINTF: “Dnfrmed remw: 3x: 3k 4x®, sllocstione(i] . ptr. sllocstione(i].csllsce[D]. sllocstians(i]
¥
1
FardiE
fitrdat HREW ALTOC

fimoluds odums . hx
Fardak

Fibndat THLTHE_ALLOC

| CN L
B =
=B slloostioms[i] [1
ptr 034 0EE=
3 oallers D DEEE 1644
[o] Dhe 3B 2 Sl
[1] DRI 22a]
[z] DxDZBd1d1E
[2] O0ZEI] Bz
but Ear ZEEDDLY: Errar: zysbal “hobEar® rak Eourd
i Lal CEEODLT: Ervor: symbol "slob® pob £omrnd
(AT wistcmd WNRCHE 7, womichd), Waaicra 7

Frady Ln b Cal B

Figure 3 C++ listing for leak detection

" not implemented in this example, but easy to implement via calling memory _check()

5
Confidential

DUMA — Debugging memory on BREW® airsource

MOBILE SOFTWARE

Show the Assembly View, either by hitting Ctrl-F11 or right-clicking and selecting
‘Go To Disassembly’. You will now see (Figure 4) an annotated assembly listing.
Select one of the allocations[i].callers[] values, and drag it to the assembly listing,
then release.

' Bpefduma - Micreenlf Viensd C++ [break] - [Dizsssemiiy)

Elma Ed Yo jumt Projsct Dabug [edh Wicke e =B x|
kE __&5m int 2 £y
(13 IBGFRIATEL " Tl reesd mpaw: Mp: Xy Xe® . slloostioms[i] pir. slloosticws[i] osllees[0]. slloostd

U1k FIVEE K. ward phr ROy =hamch i L1HE - 4 1

¥ moK
i
®.omER
®
dx.dward ptr [_a_pvtkEE -
£ ¥
o | Hgme [sbe
B sllo=stiane[1] 1{ 1
ptr Dm0 bl O 0
H callarx DeD3BE1E44
= [0] Dl Ed 2 2]
- feliRl |
= [2] Oe0zEd1416
[3] DD 3Bl B 2
bt £er CEEONDLT : Ervor: ovmbol “bmf fer® wob £omred
xlat CEEDDLY: Error: mymbal “zlat® pot Eound
[vismeii < \isior T, ekl o, Vasiord

[2acis
Figure 4 Assembly listing for leak detection

6
Confidential

DUMA — Debugging memory on BREW® airsource

MOBILE SOFTWARE

You will now see a new listing (Figure 5). In this case we selected the value for
allocations[i].callers[2], so we are now looking at the method which called the method
which called the method which allocated the memory. Or, if you like, we end up in
this code when we return through three levels of call-stack from the allocation routine.
This is considerably more useful information than the BREW Simulator gives you.

‘o pesfduma - MEcresolt Visuel Cr+ [break] - [Disesscsnbiy]
filpe GOt Wea Feet BSr [ebu) Do Mnde B e
3
T
e caxa EVT_KEY
Th svitohi vParan]
Ir _ {

. 1400k P _ns ﬂ-"'H_EII Appl
a <+ Lask
BD: T int
36l o .
Bi _) “—'DFII‘TIK-E':L'LIIIH.-.Idli bytax®]
- . ¥ dward , 3)
B2 o raburn TEUE
nld W
1 ¥
= Hame | ke
— B allocatioms[i] i 1
ptr heDEhdDEES
3 callers O DEEL 1644
[ol DD 3B 3mi
[1] OENEEIZEs]
[z1 DD 3Bdid1E
[Z] OENEE]] Bl
but Ear CEEDDLY: Errar: zysbal “hoffar® rat Eourd
s lat CEEDDLF . Errvor: svabal “slot” pot Cownd
DxD3Bd23mi EQEBIZ4E
b, wisichd TWNRche 7, wamichd | Wit 7

i
Figure 5 Assembly listing for original allocation

7
Confidential

DUMA — Debugging memory on BREW® (7 airsource

f MOBILE SOFTWARE
4 Buffer Overrun Detection

When a buffer overrun occurs, DUMA stops execution at the exact instruction causing
the illegal memory access. You will be able to see the full call stack for the code
being executed. In addition, provided you can identify the address of the allocation,
which is generally pretty easy’, you can look at where the address was allocated, and
the call stack at that time.

When an illegal memory access is detected, you will see the following dialog (Figure

6). On Visual Studio 2005 there will be an option to break or continue, ignoring the
3

error.

Microsoft Wisual C++ P§|

L]
\v IUnhandled exception in BREW _Simulator,exe (TESTDUMA.DLL): OxC0000005; Access Violation,

Figure 6 Breakpoint following illegal me mory access

Click OK (break on VS 2005) and you will see the line of code triggering the
error (Figure 7). TestDUMA includes a utility function find allocation(void*)
which will return the allocation information and call-stack for a pointer. In this
case the buffer overrun occurs when access buf[5], so we call
find_allocation(buf). If the pointer passed as a parameter to find allocation()

was not actually allocated on DUMA’s heap, find allocation() will return
NULL.

2 Tt would be possible to add a method to identify the allocation by looking backwards through memory
for a magic marker.

* To ignore the error and continue in Visual C++ 6.0, click OK, then Ctrl-F11 to get the assembly view.
Right click on the instruction *after* the illegal memory access and select “Set Next Statement”. Then
continue running with F5. You can do this in the C view as well, but it is not recommended, as you will
be skipping more assembly instructions than necessary.

8
Confidential

DUMA — Debugging memory on BREW® airsource

MOBILE SOFTWARE

‘oopesidumea - MEcresolt Visuel Cr+ [bhreak] - [lesidemecpg]

[e G ea et Bt (b Dok W Help -8 =
1
onns AVE_1 ﬂ
I'!E'l"":ll'll:
wn-r[rawTaxt ([[asked { bytaxz®)
return TRUE
cama AVE_2
chare buf = rew char[G]
o LDBCFRIATF "= . buE[E]]
dalstsl] bt
wem—+[iowwTact { L Huf Emr ovecoun®)
¥
raturn TRUE
omns RVE_2
{ Iy ¥
char® bof = rmw chac[5]

tmt[-1] = O
deletel] buf:

wm—r[leawTaxtk ([“ Buf far urdarrun®)

::'\-l': urn TRUE

daEaulk
i | |
LET — L
= Hame |k
=B tind_sllocationdbu: DKOZEE 1620 Stroof _k11ooation & 8110080 i00ns
ptr e03u20EER
3 oallers e DERE 1624
[o]l heD3EA1441
|- Qi meiedaEl |
= [2] [T
— [z] ook] e

(AT wistcmd WNRCHE 7, womichd), Waaicra 7
i
Figure 7 C++ listing for buffer overrun detection

It is important to note that find allocation() only works on pointers allocated on
DUMA’s heap. It will not return call stack information for pointers allocated by other
means, or for a pointer which addresses any address other than the base of a heap
block. If the pointer has been modified, for example to point somewhere inside a heap
block, find allocation() will return NULL.

Having ascertained the call stack information in the watch window —
find_allocation(buf).callers in this instance — you can now use this call stack
information to view the code where the allocation took place. Follow the same
procedure as listed in Leak Detection in the previous section.

9
Confidential

DUMA — Debugging memory on BREW® airsource

MOBILE SOFTWARE

5 Buffer Under-run Detection

Buffer under-runs are only detected on a write, not a read, and are detected at de-
allocation time. At de-allocation, you will see a User Breakpoint dialog, and after
clicking OK, you will be shown code in the DUMA_Abort routine. To find the actual
code where the de-allocation takes place, you will need to go back up the call stack —

in this case click on MyApplet::HandleEvent, which is the last visible line of call
stack.

‘o pesiduma - MEcresolt Visuel Cr+ [bhreak] - [prinioc]

[B G e Jomit Bopst [ebug Tods Widow Heo

=| = DTHA_RBarEioonmsr. Ohar & DEDZESssfD “scrivdg’] lives 280 -~

A _cdums_check_xleck]_ [THA_Slat * DeD3ISZDDE0)] lirm 250 + 3B bytax
dues_dssllaoatsiniid & ORD2830EEh. int 1. int 4. OoomsEk Ohar & ORDZESsZ0d " sCEd "_oint F11]1 lives 10BE + %
_cdums_Eremivoid * [k03a30Efh, conmt char # hel3bmmid "mtring'. ant 211)] larm 1109 4 21 hytax
A _frssivold & Ie0Es20EEL] livs 211 + 26 bptess
dulmte_ohjmctiwaid * IxD3a30E€h] lirm 256 + 9 bhytax
YRR L delete[é-:umd s Ou0ZsaDEEl] lives ZEZ + 5 bptss
Hyhpplat : HerdlaEvant AEEApplat # DxDZE9B4Dd, unzigresd xhart 56, unmigred share EX3ED

uneigresd lamrg 0] ¥
L} *
% | umm kalligatpadd]. SIGILL)] inmtmed ot sbarts| becsuse zows jl
& wis—guided iwplewsnistiors of sboreid] flush stdio. vhich osn
caume mallocd] ar Eremd] to be callsd
-
killdgaepadd]. SIGILL)
Fiz]
% Pirdove domzn't heve s kill{] =
= __&xm o int 3
< mbark]
fpd L E .
<% Juxk in cams masmthirg hardlar SICILL &rd raturne,. axik lare. &
_=om oink 3
S _meak(=1]
—
-
metarnel print Eunctian 'I
g o Fianml rad iF s FdeslTo o reimia Fo Teshme OmErmE of Phes TIF
4 "
BT |Walus
— £ ivd_alloostiomd bt | CHENI17?: Exror: symbol “buf® pot found

oLk, Wikl WWakchT Y Womichd) Wainlchd)
Framdy Ln 30 Cal 1

Figure 8 C++ listing for buffer under-run detection

10
Confidential

